CADASTRE SURVEY (SGHU 2313)

Similar documents
CADASTRE SURVEY (SGHU 2313)

INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL questions.

CADASTRE SURVEY (SGHU 2313)

CADASTRE SURVEY PRACTICE (SGHU 4323)

INSTRUCTION: This section consists of TWO (2) structured questions. Answer ALL questions.

PRESENTATION SUMMARY

SCOPE OF PRESENTATION

RMK 357 Land Administration [Pentadbiran Tanah]

ESTIMATE IN FORMATION OF CONSTRUCTION CONTRACT EZATUL SHARIDA BINTI AHMAD TERMIZI UNIVERSITI TEKNOLOGI MALAYSIA

Jadual 1: Faktor Pemberat Bagi Jenis Petak (F1)

CADASTRAL STUDIES (MGU1014 / MGHU1514)

METHODOLOGY FOR THE DEVELOPMENT OF NATIONAL DIGITAL CADASTRAL DATABASE (NDCDB)

CADASTRE SURVEY PRACTICE (SGHU 4323)

THE INFLUENCE OF INTEREST AND UNDERSTANDING OF HOUSING DEVELOPERS ON GATED COMMUNITIES DEVELOPMENT AINUR ZAIREEN BINTI ZAINUDIN

NOVATION AGREEMENT IN DESIGN AND BUILD CONTRACTS NATASHA SAHIL UNIVERSITI TEKOLOGI MALAYSIA

KERAJAAN MALAYSIA SURAT PEKELILING PERBENDAHARAAN BIL. 4 TAHUN 2003

Faculty of Built Environment Universiti Teknologi Malaysia

LAND ACQUISITION ISSUES FOR JABATAN KERJA RAYA s ROAD WORK PROJECT NOOR FAZURA ABU SAMAAN

JADUAL IX KANUN TANAH NEGARA [Aturan 36J (2)] NOTIS TAWARAN

CADASTRAL STUDIES (MGU1014 / MGHU1514)

Section 7 : Road Lighting

CADASTRE SURVEY PRACTICE (SGHU 4323)

TEMPLATE SERAGAM SENARAI SEMAK DOKUMEN DAN SENARAI SEMAK TERPERINCI AGENSI TEKNIKAL JKT

PROFESSIONAL PRACTICE (SGHU 4342)

Developing Infrastructure Framework To Facilitate The Malaysia Multipurpose 3D Cadastre

Submit to State PTG by proprietor within 2 weeks. State CS within 1 month. Superstructure Stage

DOKUMEN TIDAK TERKAWAL

MANUAL PROSEDUR KERJA PEMBANGUNAN APLIKASI

OPERASI PERKHIDMATAN SOKONGAN. PERPUSTAKAAN SULTAN ABDUL SAMAD Kod Dokumen: UPM/OPR/PSAS/P016

OUTLINE. Office Practice

RMK 357- Land Administration fpentadbiran Tanah]

LAND LAW AND SURVEY REGULATION (SGHU 3313)

CONSULTANT ARCHITECT S DILIGENCE IN RAIL INFRASTRUCTURE PROJECT SHAMS ARIDA BIN ARIFFIN

DLANGUAGE STUDIO NO 30 1 st FLOOR PERSIARAN B RAYA LANGKAWI MALL KEDAH D.A KERTAS PENERANGAN L FRONT OFFICE ASSISTANT

MEMBUAT DAN MENGUJI UNIT KAWALAN SUHU MOHD FARMEZEE BIN ABDULLAH UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CURRENT TREND IN GEOINFORMATION TECHNOLOGY INTRODUCTION

HURAIAN PINDAAN DOKUMEN ISO UPM

SISTEM TEMPAHAN KERETA SEWA BERASASKAN WEB (UKM EZ-CAR) Noor Aznida Farina Binti Md Saad Masnizah Mohd

Practical issue arising and how can developers adapt to new requirement

INSTRUCTION: This section consists of THREE (3) essay questions. Answer ALL questions.

Abstract. the individual apartment units in a multi-storey apartment building. The hypothesis

UNIVERSITI TEKNOLOGI MALAYSIA

CADASTRE SURVEY PRACTICE (SGHU 4323)

Jadual H, Fasal 27 Cara Penyerahan Pemilikan Kosong Akta Pemajuan Perumahan (Kawalan Dan Pelesenan) 1966 Akta 118

RMK 357 Land Administration [Pentadbiran Tanah]

SALINAN DOKUMEN TERKAWAL

KAJIAN TERHADAP KUALITI UDARA DALAMAN BAGI BILIK KULIAH DI POLITEKNIK MERLIMAU

TAJUK PEMBENTANGAN : PERUNDANGAN TANAH DI BRUNEI DARUSSALAM DISAMPAIKAN OLEH : AMAL HAYATI HAJI JUNAIDI PEGAWAI TANAH BAHAGIAN PENDAFTARAN

PENGURUSAN. Kod Dokumen: UPM/PGR/P001. PROSEDUR PENGURUSAN DOKUMEN ISO Tarikh: 20/6/2017

OPERASI PERKHIDMATAN SOKONGAN PERPUSTAKAAN SULTAN ABDUL SAMAD Kod Dokumen: UPM/OPR/PSAS/P015. PROSEDUR PERKHIDMATAN MAKLUMAT Tarikh: 18/08/2017

SISTEM PENGURUSAN DOKUMEN (INFOBOX) Athirah Hazira Ab Halim Rodziah Latih ABSTRAK

OPERASI PERKHIDMATAN SOKONGAN PERPUSTAKAAN SULTAN ABDUL SAMAD Kod Dokumen: UPM/OPR/PSAS/P015. PROSEDUR PERKHIDMATAN MAKLUMAT Tarikh: 29/06/2018

SOKONGAN KEWANGAN. PEJABAT BURSAR Kod Dokumen: UPM/SOK/KEW-BUY/P005. PROSEDUR SEBUT HARGA UNIVERSITI Tarikh: 18/08/2016

CADASTRE SURVEY PRACTICE (SGHU 4323)

Kajian Penggunaan Termometer yang Berbeza ke atas Kualiti Penggorengan Hasilan Kerepek

KAWALAN DOKUMEN. Tarikh: 29 Disember 2017 Tarikh: 29 Disember 2017

Faculty of Information and Communication Technology

Tafsiran Dokumen untuk Permohonan evdr PRA

Keywords: Pollutants, swirling flow, double radial swirler, combustion. Kata kunci: Bahan cemar, aliran berpusar, pemusar dwi aliran, pembakaran

PROCLAMATION OF SALE IN THE MATTER OF DEED OF ASSIGNMENT DATED 16 TH APRIL, 2004

FORM OF ACCEPTANCE AND TRANSFER CONDITIONAL MANDATORY TAKE-OVER OFFER DATUK SERI TAN JING NAM, MR ANDREW TAN JUN SUAN AND DATO TAN LEE SING

Jurnal Teknologi. Full Paper. Idris Zulkifle a*, Mohd Hafidz Hj Ruslan a, Mohd. Yusof Hj Othman a, Zahari Ibarahim a, Kamaruzzaman Sopian b

PEMBEBANAN SERBUK YANG OPTIMUM BAGI BAHAN SUAPAN DARIPADA SS 316 L, PEG, PMMA DAN AS BAGI PROSES PENGACUANAN SUNTIKAN LOGAM (MIM)

THE PROCLAMATION OF SALE IN THE MATTER OF THE COMPOSITE LOAN AGREEMENT AND ASSIGNMENT AND POWER OF ATTORNEY BOTH DATED THE 18 TH APRIL 2005 BETWEEN

TROPICANA CORPORATION BERHAD ( TROPICANA )

DOCTRINE OF PRIVITY AND ITS APPLICATION IN RELATION TO SUB-CONTRACTOR S PAYMENT NOR AIDA BINTI MOHD AMIN

SARATOGOA SDN BHD (Company No.: P) (Receiver Appointed)(In Liquidation) TENDER SSB/1

KETEGASAN HABA DAN HUBUNGANNYA DENGAN PERUBAHAN FISIOLOGI DI KALANGAN PEKERJA LELAKI KILANG PEMBUATAN KOMPONEN AUTOMOTIF, SHAH ALAM

Perjanjian Rakan Kongsi (IB)

HURAIAN PINDAAN DOKUMEN ISO UPM

KEBERKESANAN PENGELUARAN HAKMILIK KEKAL BERDASARKAN PINDAAN KANUN TANAH NEGARA 1965 (AKTA A1104)

CADASTRE SURVEY (SGHU 2313)

SOKONGAN KEWANGAN PEJABAT BURSAR UPM/SOK/KEW-BYR/P011. PROSEDUR PEMBAYARAN GAJI ATAU ELAUN Tarikh: 05/06/2015

ISU-ISU PENGINTEGRASIAN PANGKALAN DATA UKUR KADASTER DAN SISTEM PENDAFTARAN TANAH BERKOMPUTER GENGATHARAN A/L MARIAPPAN

KOD :

Rencana-Rencanal Arlicles

KENYATAAN TAWARAN TENDER HOSPITAL PUSRAWI SDN BHD

PROCLAMATION OF SALE IN THE MATTER OF THE COMPOSITE LOAN AGREEMENT AND ASSIGNMENT AND POWER OF ATTORNEY BOTH DATED 12 TH JULY, 2003 BETWEEN

THE STUDY OF PROBLEMS FACED BY PROPERTY MANAGEMENT IN MANAGING THE HIGH RISE CONDOMINIUM IN MALAYSIA NORAZIAH AZMIN BT ABD LATIF AZMI

The Integration of CORS Networks and the Cadastre and its Application in NSW, Australia

Sains Malaysiana 47(4)(2018):

PENYAMPAIAN INTERAKTIF INFOGRAFIK DALAM TEKNIK HOLOGRAFI UNTUK MEMPERKENALKAN PERSEMBAHAN KUDA KEPANG

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA (UPNM)

VNIMPS" P1. AYS OF FORMAL LAND OWNERSHIP AND LAND TITLING WITH REFERENCE TO THE RURAL COMMUNITIES A STUDY OF PEOPLE'S PERCEPTION

PROCLAMATION OF SALE

ANALISIS STRUKTUR DAN SPESIES PERMUKAAN TERHADAP KEREAKTIFAN MANGKIN OKSIDA MANGAN TIMAH

Establishing Efficient Cadastral Surveying Plan in Accordance with Introducing World Geodetic Reference System in Korea

HURAIAN PINDAAN DOKUMEN ISO UPM

MESYUARAT PEMBENTANGAN KERTAS PENYELIDIKAN JABATAN BIL. 3/ DISEMBER 2009 DEWAN NUSANTARA, MENARA SRI SAUJANA INSPEN KERTAS PENYELIDIKAN

DOKUMEN BUKTI YANG DIPERLUKAN

Section I General Information

PROCLAMATION OF SALE IN THE MATTER OF THE COMPOSITE LOAN AGREEMENT AND ASSIGNMENT AND POWER OF ATTORNEY BOTH DATED 07 TH DAY OF DECEMBER, 2005

PRACTICAL COMPLETION FOR WATER SUPPLY PROJECTS KHAIRI BIN JAFFAR UNIVERSITI TEKNOLOGI MALAYSIA

EASY ESTATE ADVERTISING SERVICES : SITI AISHAH BINTI MANSOR

THE CONSTRUCTION OF HOUSE PRICE INDEX: MODELLING BY INCORPORATING ABSOLUTE LOCATION NORSHAZWANI AFIQAH BINTI ROSMERA

ISI KANDUNGAN. BAB 3: BEKERJA DENGAN DOKUMEN 3.1 Mencipta Dokumen Baru. 3.2 Membuka Dokumen 3.3 Compatibility Mode. LATIHAN

NALURI VENTURES SDN BHD (Company No.: K) (In Liquidation) TENDER NVSB/LAND/1

RAK 346 History and Theory in Architecture 1 [Sejarah dan Teori Senibina 1]

MANUAL KUALITI MK.UiTM CNS.01

CADASTRE SURVEY PRACTICE (SGHU 4323)

Transcription:

CADASTRE SURVEY (SGHU 2313) WEEK 1-PREPARATION FOR CADASTRE SURVEY SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1

OUTLINE Kalibrasi Alat Ukur Ukur Pengukuran (Jarak dan Keluasan) Sistem Kordinat Ukur Kadaster 2

KALIBRASI ALAT UKUR 3

Kalibrasi Peralatan Ukur Hasil kerja akhir bagi sesuatu pengukuran ialah pelan dan data pengukuran. Hasil kerja ini pula digunakan untuk tujuan tertentu contohnya bagi kerja ukur hakmilik, salinan Pelan Akui (PA) digunakan sebagai pelan pada dokumen hakmilik tanah. Dokumen hakmilik tanah adalah suatu dokumen rasmi yang dijamin oleh kerajaan sebagai dokumen yang tidak boleh disangkal. Sehubungan itu semua proses untuk menghasilkan dokumen yang tidak boleh disangkal perlu kepada suatu prosedur dan sistem kerja yang dapat menjamin dan mencapai status tersebut. Peralatan ukur yang digunakan untuk mengutip dan memproses data telah ditetapkan perlu melalui proses tentukur bagi mempastikan alat tersebut dalam keadaan baik dan data yang dihasilkan adalah betul. 4

Kalibrasi Peralatan Ukur JUPEM telah menetapkan semua peralatan ukur (kompas prisma, rantai ukur, EDM, total station, GPS, alat aras) yang digunakan dalam pengukuran kadaster hendaklah dijalankan tentukuran. Slip ujian/kalibrasi perlu dilampirkan bersama-sama dengan buku kerja luar. 5

Kalibrasi Peralatan Ukur Bagi memastikan peralatan yang digunakan untuk mencerap jarak dan mendapatkan koordinat relatif di atas permukaan bumi berada dalam keadaan baik, peralatan peralatan tersebut perlu dilakukan kalibrasi sekurangkurangnya setiap 6 bulan sekali untuk alat total station atau EDM dan sekurang-kurangnya 1 tahun sekali bagi alat GNSS. 6

Kaedah Kalibrasi Total Station Semakan Harian Dilaksanakan di lokasi kerja, setiap kali hendak memulakan kerja ukur. Kaedahnya, ukur semula jarak mana-mana garisan yang telah diukur pada hari sebelumnya. Kerja pengukuran boleh diteruskan jika jaraknya berbeza kurang daripada 10 mm jika tidak proses DFT perlu dijalankan. 7

Semakan Harian i. Semakan harian hendaklah dibuat setiap hari sebelum menyambung kerja-kerja ukuran bagi memastikan alat berada dalam keadaan baik. ii. Perbezaan di antara jarak diukur berbanding cerapan hari sebelumnya hendaklah tidak melebihi 10 milimeter. iii. Bagi alat GNSS, semakan harian hendaklah dibuat juga. 8

Kaedah Kalibrasi Total Station Differential Field Test (DFT) DFT dilaksanakan di lokasi kerja apabila; Semakan Harian mempunyai beza jarak melebihi 10 mm dan apabila setiap kali memulakan kerja ukur yang baru. 9

Kaedah Kalibrasi Total Station Jarak AB hendaklah dibandingkan dengan jumlah jarak CA + CB; Jika didapati jarak melebihi 10 mm, alat yang diuji tidak boleh digunakan, ianya hendaklah dibuat ujian kalibrasi 10

Differential Field Test (DFT) i. Differential Field Test hendaklah dijalankan setiap kali memulakan kerja baru. ii. Bagi kerja yang bermula dengan menggunakan dua (2) tanda Cadastral Reference Mark yang saling nampak, Differential Field Test hendaklah dibuat di atas garisan yang menyambungkan kedua-dua tanda Cadastral Reference Mark tersebut. iii. Sekiranya wujud perbezaan jarak di antara cerapan terus menggunakan Total Station berbanding hasil kiraan dua (2) tanda Cadastral Reference Mark, jarak hasil kiraan dua tanda Cadastral Reference Mark hendaklah digunapakai sebagai jarak muktamad garisan tersebut. Had perbezaan yang dibenarkan adalah tidak melebihi 0.020 meter. 11

Differential Field Test (DFT) iv. Bagi perbezaan melebihi had 0.020 meter, tindakan berikut hendaklah diambil jika: (a) Differential Field Test berada dalam had 0.010 meter, penentuan Cadastral Reference Mark perlu dilakukan semula. (b) Differential Field Test tidak berada dalam had, alat total station tersebut perlu dibuat kalibrasi. 12

Kaedah Kalibrasi Total Station Alat Total Station beserta dengan reflectors hendaklah dibuat ujian kalibrasi di tapak ujian EDM apabila; Ujian DFT mempunyai beza jarak; melebihi dari 10 mm; sekali setiap 6 bulan; Selepas diservis; Berlaku penggantian salah satu unit dalam set alat; apabila berlaku kecacatan akibat jatuh atau lain-lain, ataupun bacaan jarak pada posisi yang sama tidak konsisten. 13

Kaedah Kalibrasi Total Station Alat Total Station dipasangsiap di tiang 1 dan jarak-jarak dari tiang 1 ke tiang-tiang yang lainnya dicerap dengan bantuan cermin prizam yang mempunyai beza jarak antara 5m 300m. Bacaan dicatatkan dalam Borang Ujian EDM (online atau manual). Perbezaan asas antara jarak yang dicerap dan jarak piawai (atau jarak asal) bagi setiap garisan cerapan dicatatkan dalam ruangan yang berkenaan. Perbezaan-perbezaan ini dijumlahkan, dan kemudian dibahagikan kepada bilangan cerapan yang dilakukan bagi mendapatkan satu nilai angkatap. 14

Kaedah Kalibrasi Total Station Had maksima constant error (jarak diukur jarak piawai / bilangan cerapan) yang dibenarkan adalah 10 mm, jika tidak alat berkenaan hendaklah dihantar untuk diservis/dibaiki. Adalah digalakan supaya cerapan dibuat berulang kali dengan alat Total Station dipasangsiap pada tiang-tiang yang lain. lni bertujuan untuk memastikan pengukuran jarak Total Station menepati kejituannya. 15

Kaedah Kalibrasi Total Station dan Peralatan GNSS i. Data-data berdigit bagi jarak piawai pillar (*.med dan *.gnss) dan sijil jarak piawai pillar (*.pdf) hendaklah dimuat turun secara dalam talian (on-line) daripada sistem yang telah dibangunkan. ii. Fail kalibrasi yang dihasilkan secara berdigit di lapangan hendaklah dimuat naik ke dalam sistem yang telah dibangunkan untuk tujuan validasi data dan seterusnya kelulusan. iii. Bagi kalibrasi yang dibuat secara manual pula, data-data cerapan hendaklah dimasukkan ke dalam sistem melalui key board entry untuk validasi data dan kelulusan. 16

Kaedah Kalibrasi Total Station dan Peralatan GNSS iv. Sistem akan mengeluarkan sijil kalibrasi (*.edm dan *.gnss) yang telah diluluskan dan hendaklah dimuat turun dan seterusnya disertakan bersama-sama fail ASCII yang lain semasa membuat penghantaran kerja melalui JUPEM2U. v. Format fail berdigit *.edm dan *.gnss yang dikeluarkan oleh sistem adalah seperti berikut : JE_2009_01_01 di mana; J - Negeri E - Tapak EDM (G - Tapak GNSS) 2009 - Tahun 01 - ID Tapak 01 - Nombor Siri Sijil EDM 17

Contoh Borang Ujian EDM (Lama) 18

Contoh Borang Ujian EDM (Baru) 19

Kaedah Kalibrasi GNSS Tiga ujian perlu dilakukan ke atas peralatan GPS bagi mempastikan pealatan GPS berkenaan berada dalam keadaan baik iaitu: Zero Baseline Test EDM Baseline Test GPS Network Test 20

Kaedah Kalibrasi GNSS Zero Baseline Test Ujian ini perlu dilakukan sebelum bermulanya sesuatu projek baru. Tujuan ujian ini ialah untuk memastikan receiver GPS, antena, kabel serta perisian yang digunakan berada dalam keadaan yang baik dan bersesuaian dengan spesifikasi kerja. Caranya ialah 2 unit receiver GPS disambungkan pada 1 unit antena dengan mengunakan Antenna Cable Splitter. Kedua-dua receiver GPS sepatutnya memaparkan nilai koordinat yang sama. Had perbezaan jarak yang dibenarkan adalah tidak melebihi 3 mm. Ujian ini perlu dijalankan 2 kali untuk kedua-dua antena GPS. 21

Kaedah Kalibrasi GNSS EDM Baseline Test Ujian ini perlu dilakukan 6 bulan sekali atau sebelum sesuatu projek yang besar dilaksanakan. Tujuan ujian ini ialah untuk memastikan pasangan receiver GPS serta perisian pemprosesan yang digunakan untuk penentuan garis dasar berada dalam keadaan baik. Ujian ini juga akan menentukan kejituan receiver GPS serta mengesahkan keupayaan pemprosesan. Ujian dilaksanakan di tapak ujian EDM/GPS iaitu di atas pilar-pilar yang mempunyai beza jarak antara 20m 1km. Receiver GPS mesti digunakan dengan antena serta kabel yang sama. Had perbezaan jarak slope (cerapan piawai) yang dibenarkan adalah tidak melebihi 10 mm. 22

GPS Network Test Kaedah Kalibrasi GNSS Ujian ini dijalankan setiap tahun atau semasa firmware atau perisian pemprosesan dinaiktaraf. Tujuan ujian ini ialah untuk memastikan peralatan GPS berfungsi dengan baik bagi menghasilkan koordinat relatif yang tepat. Sebelum ujian ini dijalankan optical plummet perlu diuji beserta dengan Zero Baseline Test. Ujian mesti dibuat di atas minima 3 stesen GPS jaringan geodetik GPS sedia ada. Ujian ini boleh dibuat dalam beberapa sessi cerapan dengan lebih dari 1 pasang alat. Kaedah cerapan statik digunakan dengan masa cerapan > 2 jam bagi setiap sesi cerapan. Pelarasan jaringan Minimally Constrained dibuat mengunakan datum GDM2000. Hasil koordinat akhir hendaklah dalam sistem koordinat tempatan (RSO). Allowable discrepancy; < 10mm bagi koordinat horizontal atau < 20mm bagi komponen pugak atau < 5 + 2XL = mm (L = jarak baseline dalam km) bagi ketepatan relatif. 23

Cut-off angle 15 kebawah semasa pemprosesan garis 24 asas. Kaedah Kalibrasi GNSS Ketika ujian Zero Baseline Test, ia memerlukan keadaan seperti berikut: Tempat ujian / cerapan perlu sekurang-kurangnya 90% sky visibility Masa cerapan sekurang-kurangnya 10 minit dengan sela cerapan 15 saat (ZBT). Receiver GPS perlu menjejak sekurang-kurangnya 5 satelit dengan GDOP < 6

25

26

Senarai tapak kalibrasi di setiap negeri 27

28

29

30

31

32

33

34

35

36

37

38

Kaedah Kalibrasi Alat Aras Ujian Dua Piket Ujian alat aras perlu dibuat untuk memastikan garis kolimatan berkeadaan selari dengan tangent utama. Oleh itu, apabila gelembung udara berada di tengah-tengah tiub, maka garis kolimatan adalah mengufuk. Jika garis kolimatan tidak mengufuk, maka selisih kolimatan terwujud dalam alat aras ini. Kaedah biasa bagi menguji alat aras adalah dengan menjalankan ujian dua piket. 39

Kaedah Kalibrasi Alat Aras Kaedah ujian dua piket (lihat rajah dibawah) ialah;- pasang alat di C di mana stesen C berada di tengah setaf A dan B. Jarak A B (L) ialah lebih kurang 40 meter. Ambil bacaan sebagai a1, b1. Anjakan alat aras di D, sebaik-baiknya berjarak L/10 iaitu lebih kurang 4 meter daripada piket B. Ambil bacaan setaf sebagai a2 dan b2. 40

Kaedah Kalibrasi Alat Aras 41

Kaedah Kalibrasi Alat Aras 42

Kaedah Kalibrasi Alat Aras Jika selisih (e) didapati kurang daripada +/ 2mm per 40 meter, maka alat aras tidak perlu pelarasan. Pandangan depan dan belakang hendaklah dicerap pada jarak yang sama supaya selisih (e) terhapus atau pendek supaya selisih e dapat dikurangkan. Untuk melaras alat di titik D, bacaan yang sepatut didapati di A ialah a2 Dihitung daripada a2 = a2 44e/40, L = 40 meter dan L/10 = 4 meter di mana sekiranya 43

Kaedah Kalibrasi Alat Aras Alat aras automatik dilengkapkan dengan skru pelarasan khas untuk kompensator, iaitu sebagai tambahan kepada diafragma bergerak. Oleh kerana pelarasan ini memerlukan kerja yang teliti, maka alat aras perlu dikembalikan kepada pengeluar untuk pelarasan di makmal. 44

UNIT PENGUKURAN (JARAK & KELUASAN) 45

Unit Pengukuran (Jarak & Keluasan) 46

Unit Pengukuran (Jarak & Keluasan) 47

CADASTRE SURVEY (SGHU 2313) WEEK 1-PREPARATION FOR CADASTRE SURVEY SR DR. TAN LIAT CHOON 07-5530844 016-4975551 48

OUTLINE Calibration of survey instruments Surveying Unit (Distance and Area) Coordinate System in Cadastre Survey 49

CALIBRATION OF SURVEY INSTRUMENTS 50

Calibration of Survey Equipment The final output of a measurement is a plan and measurement data. This output is used for specific purposes, for example, for the title survey, the copy of the Certificated (CP) is used as a plan on the document of land title. The document of land title is an official document guaranteed by the government as an irrefutable document. In this regard, all processes of producing irrefutable documents are necessary for procedure and working system that can guarantee and achieve that status. The measuring equipment used to collect and process data has to be determined through the calibration process to ensure the instrument is in good condition and the data produced is correct. 51

Calibration of Survey Equipment JUPEM request all measuring instrument (prisms, measuring chains, EDM, total stations, GPS, leveling instrument) used in cadastral survey to be calibrated. Test/calibration result slip need to be attached together with field book. 52

Calibration of Survey Equipment To ensure the instrument used to measure distances and obtain relative coordinates on the surface of the earth is in good condition, the instrument should be calibrated at least once every 6 months for total station or EDM and at least once a year for GNSS instrument. 53

Total Station Calibration Method Daily Check To be carried out at site, every starting of surveying work. The method is to re-measure the distance of last measured line done yesterday. Survey work can be continued if the distance is less than 10 mm otherwise the DFT process should be carried out. 54

Total Station Calibration Method i. Daily check should be carried out daily before continue the survey work to ensure the instrument is in good condition. ii. The difference between the measured distance compared to the previous day's observations should not exceed 10 millimeters. iii. For GNSS instrument, daily check should be made as well. 55

Total Station Calibration Method Differential Field Test (DFT) DFT to be carried out at site when daily check have a difference of 10 mm each time start a new survey line. 56

Total Station Calibration Method a) Plant peg A and B with distance not less than 50m A (peg) 50m B (peg) b) Set up Total Station at peg A and Prism at peg B, measure distance A to B c) Plan peg C in the middle of line A and B A (peg) 24m C (peg) 26m B (peg) d) Move Total Station to peg C and set up prism at A and B, measure distance CA and CB. Compare distance AB with the total distance of CA + CB; If it is found exceed 10 mm, the instrument shall not be used, it shall sent for calibration test 57

Differential Field Test (DFT) i. Differential Field Test must be conducted every time when start a new survey work. ii. iii. For survey work that start with two (2) visible Cadastral Reference Mark, Differential Field Test should be made on the line that connects both Cadastral Reference Marks. If there is a difference between direct observation using Total Station versus the calculated result of two (2) Cadastral Reference Mark, the distance of the calculated two Cadastral Reference Marks shall be adopted as the ultimate distance of the line. The permissible difference limit is not more than 0.020 meters. 58

Differential Field Test (DFT) iv. For differences above the limit of 0.020 meter, the following action shall be taken if: (A) Differential Field Test is within the limit of 0.010 meter, the Cadastral Reference Mark determination needs to be resurvey. (B) Differential Field Test is not within the limits, the total station must be calibrated. 59

Total Station Calibration Method Total Station together with reflectors' shall be calibrated test at EDM test base when; the DFT test has a distance difference; exceeding 10 mm; once every 6 months; after service; replacement of any unit of the instruments; in any defect due to fall or other, or inconsistent in reading distance at the same position. 60

Total Station Calibration Method Set up Total Station on pole 1 and distances from pole 1 to the other poles are measure with the help of prism which have a distance between 5m - 300m. Readings are recorded in the EDM Test Form (online or manual). The basic difference between the distance measured and the standard distance (or the original distance) for each observation line is recorded in the provided space. These differences are summed up, and then divided into the number of observations to get mean value. 61

Total Station Calibration Method Maximum limit of constant error (measured distance - standard distance / number of observations) allowed is 10 mm, otherwise the instrument should be delivered for maintenance / repair. It is recommended that the observation be made repeatedly with the Total Station set up on the other pillars. This is to ensure that distance measured by Total Station meets its accuracy. 62

Total Station and GNSS Instrument Calibration Method i. The digital data for the pillar distance (*.med and *.gnss) and certificate of pillar distance (*.pdf) must be downloaded online from the system that has been developed. ii. iii. A calibration file that generated digitally in the field should be uploaded into a system that has been developed for the purposes of data validation and approval. For manual calibrations, the observation data shall be entered into the system via key board entry for 63 validation of data and approval.

Total Station and GNSS Instrument Calibration Method iv. The system will issue a calibration certificate (*.edm and *.gnss) which has been approved and should be downloaded and subsequently attached together with ASCII file when submitting surveyed work via JUPEM2U. v. The digital file formats *.edm and *.gnss are as follows: JE_2009_01_01 where; J State E - EDM Test Base (G GNSS Test Base) 2009 - Year 01 Test Base ID 01 - EDM Certificated Serial Number 64

Sample of EDM Test Form (Old) 65

Sample of EDM Test Form (New) 66

GNSS Calibration Method Three tests need to be done on GPS instruments to ensure the GPS instruments are in good condition: Zero Baseline Test EDM Baseline Test GPS Network Test 67

GNSS Calibration Method Zero Baseline Test Should be performed before any new GPS cadastral survey activity is carried out. Should be performed to ensure the correct operation of the receivers, antennas, cabling and software. Shall be carried out by connecting two (2) GPS receivers to the same antenna, using an antenna cable-splitter appropriate for the brand of receiver/antenna. Shall be used to verify the precision of the receiver measurements, as well as validate the data processing software. The test should be applied twice, for both antennas. The resulting (computed) slope distance between the two (2) receivers being tested must be less than three (3) millimetres. If this tolerance is not met the test should be repeated or the equipment sent to the GPS agent 68 for further testing.

GNSS Calibration Method EDM Baseline Test Should be performed on a six monthly basis or prior to any large survey campaign being carried out. Should be performed to ensure the correct operation of a pair of GPS receivers that will be used for baseline measurement. The test shall be used to study the precision of the receiver measurements, as well as validate the data processing software. The GPS receivers should be tested against the established EDM baseline lengths (between pillars), varying from twenty (20) metres to about one (1) kilometre. The resulting difference in slope distance between the GPS measurement and the standard must be less than ten (10) millimetres. If this tolerance is not met the test should be repeated, and if the equipment fails again the instrument should be returned to the GPS agent for repair. 69

GPS Network Test GNSS Calibration Method The network test should be carried out on an annual basis, or when the receiver's firmware or post-processing software is upgraded to a new version. In the later case, the test should include the Zero Baseline Test and EDM Baseline Test. The GPS instrumentation must be tested on part of the established high order geodetic network (DSMM Report, 1994, GPS Derived Coordinates ). The network should include a minimum of three (3) existing First Order GPS Control stations as described in the above DSMM report (1994). The maximum allowable discrepancy between the surveyed coordinates (observed GPS values) and the true coordinates (established values) for the network test must be less than ten (10) millimetres in the horizontal component or relative accuracy of better than a + bl millimetres (a=5mm, b=2ppm, L= baseline length in kilometres), and less than twenty (20) millimetres in the vertical component. If this tolerance is not met, the surveyor will be required to validate the results by repeating the test again. If the test fails again the datasets and results should be validated by the Geodetic Authority. If the results are still outside tolerance it is advised that the surveyor proceed to carry out zero baseline and EDM baseline tests, or the equipment sent to the GPS agent for further testing. 70

GNSS Calibration Method When conducting Zero Baseline Test, the above test requires the following conditions: The test should be carried out at an established EDM baseline test site, by occupying pillars with at least 90% sky visibility. The test should be performed for a minimum of ten (10) minutes observation sessions with 15 second interval. Receiver GPS perlu menjejak sekurang-kurangnya 5 satelit dengan GDOP < 6 The receivers shall track at least five (5) satellites during the test session with a GDOP of less than six (6). Cut-off angle of fifteen degrees (15 ) should be applied during the baseline processing. 71

72

73

Senarai tapak kalibrasi di setiap negeri 74

75

76

77

78

79

80

81

82

83

84

85

Level Instrument Calibration Method Then the level is move approximately 3 to 5 metres behind one of the pegs. Then take the staff reading at A and B again. Reading at A is 1.621 and at B is 1.092 and the difference is 0.529. In this example a big error exists (line of sight does not coincide with line of collimation). 86

Level Instrument Calibration Method Two Peg Test All instruments are subject to errors. The checking of the instrument (level) is therefore important. The main error is where the line of sight is not parallel to the horizontal line of collimation. In this case your levels will not be correct. A test for checking the level is known as the two peg test. This test determines the amount of error and if an error occurs notify the technician (the level must be serviced). 87

Level Instrument Calibration Method On the ground, two points A and B are marked a distance of approximately 50 metres apart. In sandy soil two pegs are used, on hard surfaces nails or paint may be used. The level is set up half way between the two points and carefully levelled. A levelling staff is placed at Peg A and a staff reading is taken then the level is placed on Peg B and a reading is taken. The staff reading at A is 1.540 and at B 1.268. The difference between the readings is 0.272. 88

Level Instrument Calibration Method 89

Level Instrument Calibration Method 90

Level Instrument Calibration Method If the difference (e) is less than +/2mm per 40 meter, then the leveling equipment does not need adjustment. Foresight and backsight reading should be observed at the same distance so that the difference (e) is omitted or short so that the difference can be reduced. To adjust the instrument at point D, the readings obtained at A is a2 Calculated from a2'= a2-44e / 40, where L = 40 meters and L / 10 = 4 meters 91

Level Instrument Calibration Method Automatic leveling equipment is equipped with a special adjusting screw for the compensator, which is in addition to the moving diaphragm. Due to this adjustment requiring careful work, the leveling equipment must be returned to the manufacturer for the adjustment in the laboratory. 92

SURVEY UNIT (DISTANCE AND AREA) 93

Surveying Unit (Distance & Area) 94

Surveying Unit (Distance & Area) 95

COORDINATE SYSTEM IN CADASTRE SURVEY 96

Cadastral Control Infrastructure (CCI) Aspects of CCI and Re-adjustment of DCDB To readjust the whole cadastral network. To constraint the propagation of error in cadastral network. The usage of least square adjustment that will distribute the residues homogeneously in the large network. 97

Cadastral Control Infrastructure (CCI) 25,000 CCI stations MyRTKnet GPS data Tie-up survey data Final coordinates in GDM2000 98

Specifications for CCI AREA PRIMARY GRID SECONDARY GRID URBAN SEMI-URBAN RURAL 2.5 km x 2.5 km 10 km X 10 km 10 km X 10 km Connected to PGGN Observation Technique: static Observation Period 1 1.5 hr Baseline Relative Accuracy less then 3ppm Coordinates Diff. From 2 Bases Stn. Less than 2 cm 0.5 km X 0.5 km 2.5 km X 2.5 km 2.5 km X 2.5 km Connected to Primary Grid Observation Technique: Rapid Static. Observation Period: 15 30 min Baseline Relative Accuracy: Less than 3ppm Coordinate Differences From 2 Bases stn.: Less Than 3cm CADASTRAL CONTROL INFRASTRUCTURE PRIMARY GEODETIC GPS NETWORK MALAYSIAN ACTIVE GPS STATIONS CCI PGGN MASS Tertiary : 5, 2.5, 0.5 Spacing First Order: 238 stations Control Network Hierarchy Zero Order: 8 Stations 99

Cadastral Control Infrastructure (CCI) 100

Cadastral Control Infrastructure (CCI) 101

Cadastral Control Infrastructure (CCI) CADASTRAL CONTROL INFRASTRUCTURE (CCI) EMPLOYING WHOLE TO THE PART CONCEPT & GPS TECHNOLOGY 102

Cadastral Coordinated System Definition of CCS (CCS) A cadastral reform program to improve the cadastral survey system. The use of least square adjustment for cadastral survey. The use of GPS for transfer of control for cadastral survey. Application of geocentric datum for cadastral and mapping Possible use of RSO in cadastral survey. The institutional and legal aspect of using coordinated system. 103

The Cost and Benefit of CCS Reduce field cost Reduce mobility cost Faster validation of survey work High accuracy using LSA 104

Main Component of CCS Coordinates - Unique Survey Accurate Coordinate - Legal (contributory) evidence of boundaries. CCI - Based on highest geodetic order - Adequate density. National Coordinate System - GDM2000 - Geocentric Cassini / RSO projection. DCDB - Contains complete cadastral map - Layered data content- appropriate data modelling design - Unique Parcel Identifier Automated Database Conversion System. Cadastral Survey Practice LSA - Whole to the Part. 105

CCS Conceptual Model The Characteristic (Entity) The Aspect (Attribute) Appropriate Data Modeling Unique Parcel Identifier Layered Complete Cadastral Maps Digital Cadastral Database (DCDB) Coordinates Legal (Contributory) Evidence of Boundaries Unique Single Set of Survey Accurate Coordinates CCS GDM2000 Common National Coordinate System Cadastral Survey Practice Cadastral Control Infrastructure Least Square Adjustment Geocentric Cassini/RSO Projection System Based on Highest Geodetic Order Adequate Density Whole-to-Part Survey Concept 106

CCS Implementation Model GDM2000 Establishing State Cadastral Control Infrastructure (CCI) Legal Organizational Related Actions New Cadastral Survey Tie-Up of Selected Parcel Corners to CCI Development of State Cadastral Control Database (CCDB) Populating DCDB With Survey Accurate Coordinates Automated Re-Coordination System Socio- Economic Related Actions Resurvey Finalized Geocentric Based Cassini & RSO Coordinates In DCDB 107

108

109

National Digital Cadastral Database BACKGROUND OF DCDB (NDCDB) Digital Cadastral Database (DCDB) contains all information obtained from cadastral survey jobs related to boundaries of land parcels. The existing DCDB, which covers the entire country, was developed from historical survey data (conversion from hardcopy Certified Plans to digital) as well as from current survey jobs. Coordinates in the DCDB were obtained from several means and contain varying, unpredictable, and un-quantified errors. 110

National Digital Cadastral Database (NDCDB) Uncertainties of surveyed values are typical, but errors are more common in some rural areas. To be able to support a modern cadastral system, an accurate positional record of the cadastre is imperative. The existing DCDB was not designed for this purpose. Digital Cadastral Database (DCDB) contains all information obtained from cadastral survey jobs related to boundaries of land parcels. Coordinates in the DCDB were obtained from several means and contain varying, unpredictable, and un-quantified errors. 111

National Digital Cadastral Database (NDCDB) The existing DCDB, which covers the entire country, was developed from historical survey data (conversion from hardcopy Certified Plans to digital) as well as from current survey jobs. Uncertainties of surveyed values are typical, but errors are more common in some rural areas. To be able to support a modern cadastral system, an accurate positional record of the cadastre is imperative. The existing DCDB was not designed for this purpose. 112

Different Types of Cadastral Coordinates RIGID COORDINATE PLOTTING COORDINATE SYSTEM COORDINATE Homogenous and Systematically Adjusted For cadastral map plotting purposes System/Software generated coordinate based on features location Rigid Coordinate Plotting Coordinate System Coordinate 113

System value Surveyed value 114

Old and New Geodetic Infrastructure GEODETIC TRIANGULATION PENINSULAR MALAYSIA GPS BASED REFERENCE SYSTEM 6.50 G071 G058 G028 G035 G023 G029 6.00 G057 G040 G047 G031 G030 G044 G054 G003 G025 G032 G033 G077 G042 5.50 G059 G076 G021 G019 G017 G063 G048 G026 G013 G050 G027 G060 G069 G053 G072 G008 G016 5.00 G024 G022 G037 G034 G005 G067 4.50 G004 4.00 G041 G007 3.50 G001 G074 G075 G070 G061 G073 G009 G036 G011 G015 3.00 G052 G055G065 G068 G038 G020 G066 G012 G039 2.50 G051 G010 G046 2.00 G014 G049 G002 G062 1.50 G043 G084 G045 G056 P075 G018 G064 P4 1.00 99.00 99.50 100.00 100.50 101.00 101.50 102.00 102.50 103.00 103.50 104.00 115

Non Rigorous Adjustment Technique For Coordinates Computation Bowditch Least Squares GPS GPS Bowditch adjustment distributes closing errors linearly but not able to provide a unique coordinates solution. Least Squares adjustment technique determine a unique set of coordinates for each boundary mark from a set of observed values 116 (bearings & distances).

Methodology For Cadastral Data Migration To The New Geocentric Datum For Malaysia (GDM2000) Expected NDCDB Spatial Accuracy GDM2000 Establishment of Cadastral Control Infrastructure (CCI) Using JUPEM MyRTKnet GPS Service CATEGORY Urban/ New Development Std. Dev. Northing ± 5 cm or better Std. Dev. Easting ± 5 cm or better Cadastral Control Spacing 0.5 km Tie-Up of Selected Parcel Corners to CCI Automated Network Adjustment & Re-Coordination System Semi Urban/Rural ± 10 cm or better ± 10 cm or better 2.5 km Re-coordination and Re-population (R&R) Total estimated number of boundary marks to be recoordinated is about 40 million boundary marks. NDCDB 117

Methodology of NDCDB Establishment of CCI and State CCDB Establishing State Cadastral Control Infrastructure (CCI) Tie-Up of Selected Parcel Corners to CCI Repopulation & Re-coordination of DCDB with Survey Accurate Coordinates Development of State Cadastral Control Database (CCDB) Populating DCDB with Survey Accurate Coordinates Automated Re-Coordination System Study on Cadastral Survey Procedures Under CCS Cost-Benefit Analysis of CCS Implementation Finalized Geocentric Based Cassini & RSO Coordinates in DCDB 118

Adjustment of NDCDB CCDB FORMATION OF CADASTRAL NETWORK Data Integrity Check Connection Line File Data Selection Adjustment RE-COORDINATION USING AN AUTOMATED DATA CONVERSION SYSTEM (ADCS) DCDB Transformation Quality Control Temp NDCDB Editing SURVEY ACCURATE DIGITAL CADASTRAL DATABASE (NDCDB) NDCDB 119

National Digital Cadastral Database (NDCDB) Based on a uniform coordinate system, i.e. GDM2000 Cassini Soldner system. Uniform coordinate accuracy of about 5-10 cm throughout Peninsular Malaysia. Cadastral system that is compatible with GPS MyRTKnet system. Cadastral database that is compatible with GIS technology. 120

Advantages of NDCDB NDCDB just have a "single line" and is "compatible" with GIS technology. NDCDB graphic coordinates are similar to coordinate attributes. NDCDB will help the development of information systems, especially the "MULTI-PURPOSE Cadastre". 121

National Digital Cadastral Database (NDCDB) State of Johor CCI Point 122

T H A N K YO U 123